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The time-dependent Navier-Stokes equations are integrated numerically for a 
finite-length concentric-cylinder geometry. The motion is initiated by an impulsive 
start of the inner vylinder from a state of rest. The transient development of a 
Taylor-vortex strucsture is discussed from the standpoint of the amplitude history, 
the onset time and vortex-front propagation ; steady-state results are compared with 
previously published experimental results. 

1. Introduction 
All laboratory flows occur in finite geometries and, moreover, are time-dependent 

to some extent (if only by virtue of their starting conditions). Basic understanding 
in fluid mechanics has now developed to the point where i t  is reasonable to attempt 
a study of the influence of these non-classical effects on the stability characteristics 
of various flows. A good deal of attention has been focused on these effects in recent 
years. A popular candidate for various stability theories and experiments has been 
flow between conccmtric rotating cylinders. The reasons for this popularity are 
threefold: namely that the character of the geometry and the basic states makes the 
corresponding stability problem somewhat amenable to analysis, experiments are 
relatively easy to perform, and there is a great deal of experience with the successes 
(and failures) of infinite-cylinder models. The classical consequence of instability in 
this flow is the appearance of a periodic Taylor-vortex structure. Modern research 
is concerned with modifications to this structure due to  finite cylinder length and/or 
time-dependent cylinder motion. 

Experimentalists have long made use of time-dependent cylinder motions and 
variable-length annuli to achieve states other than the one reached by increasing the 
inner-cylinder speed in a quasi-steady manner from a subcritical state. Coles (1965), 
for instance, was able to find as many as twenty-six stable states existing a t  a single 
Reynolds number. Benjamin and Mullin (Mullin 1982; Benjamin & Mullin 1982) have 
performed experiments in annuli of modest aspect (length-to-gap) ratio, obtaining 
at  least 39 steady flows. Among these are the so-called ‘anomalous modes’ for which 
cells adjacent to thc\ annulus endwalls spiral in the ‘wrong’ direction. They have also 
studied transitions between what they term the ‘primary flow ’ (that which is realized 
by gradual increases in inner-cylinder angular velocity from small values) and 
secondary flows that result from further increases in angular velocity. A summary 
of some recent theoretical efforts to account for finite-length effects may be found 
in the review article by DiPrima & Swinney (1981). Time dependence may be either 
periodic in nature or aperiodic, such as an impulsive change in a boundary motion. 
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The former are discussed by Davis (1976) ; references to work on flows with basic states 
which are aperiodic in time (impulsive and non-impulsive) may be found in Neitzel 
(1  982 a) .  

Experiments in a concentric-cylinder geometry for which time-dependence and 
finite length are both important were performed by Burkhalter & Koschmietler 
(1974). They measured the wavelengths of steady-state vortices that resulted from 
impulsively starting the inner cylinder from a state of rest. The outer cylinder was 
held fixed, and various end conditions and aspect ratios y were employed ; tests were 
performed for a wide range of supercritical Reynolds (or Taylor) numbers. They found 
that the average wavelength of the interior vortices (excluding those at the ends which 
are driven by Ekman pumping) initially decreased with increasing Reynolds number 
R, reaching a minimum plateau for 3 < RIR, < 4, where R, denotes the infinite 
cylinder, linear-stability theory critical Reynolds number. For RIR, > 4, the wave- 
length was found to increase with increasing R. The aim of the present work is to 
examine this problem from the standpoint of a set of numerical experiments. 

Meyer (1967) computed Taylor-vortex flows from Couette-flow initial states by 
assuming axial periodicity ( i  .e. an  infinite cylinder) and imposing initial disturbances 
of specified axial wavelength. Alonso & Macagno (1973) performed similar comput- 
ations. Alziary de Roquefort & Grillaud (1978) computed slightly supercritical flows 
in finite-length annuli by increasing the Reynolds number in several small increments, 
as might an experimentalist, allowing the flow to reach steady state between 
increments. Meyer-Spasche & Keller (1  980) solved the stcady, axisymmetric Navier- 
Stokes equations using Fourier expansions in the axial direction and a pseudoarclength 
continuation method to trace the bifurcation from circular Couette flow to Taylor- 
vortex flow. 

The above computations have been concerned with the stability of steady flow 
between concentric rotating cylinders. An unsteady basic state was considercd by Liu 
& Chen (1973), who performed numerical experiments for sudden starts, assuming 
an axially periodic flow and superposing random initial disturbances. Neitzcl & Davis 
(1981) conducted numerical experiments for spin-down within single cylinders of 
finite length using a semi-implicit finite-difference technique to integrate the time- 
dependent Navier-Stokes equations, allowing instabilities to be triggered by round-off 
and truncation errors. Of interest here were the onset times of instabilities and the 
effects of the instability on such quantities as spin-down times. It is the numerical 
method employed by Neitzel & Davis which has been adapted to treat the problem 
of interest here. The details will be presented in $2. 

The object of the present work is to compare the results of the computations with 
the steady-state measurements of Burkhalter & Koschmieder (1974) and, in addition, 
to examine various aspects of the onset process itself. From the numerical experiments 
of Alziary de Roquefort & Grillaud (1978) it is known that the transition to 
Taylor-vortex flow in a finite geometry is a smooth one, beginning with Ekman cells 
a t  each endwall for small subcritical Reynolds numbers and ending with toroidal 
vortices filling the entire annulus ( y  = 10) for RIR, = 1.17 .  Prior to this point, it  was 
notcd that cells appeared in the vicinity of the midplane, as is observed for the more 
strongly nonlinear flows computed here. These features are also seen in laboratory 
experiments. A recent paper by Ahlers & Cannell (1983) discusses the onset within 
finite cylinders in terms of a propagating vortex front. We shall present results of 
a vortex-front velocity computed for a few of the cases treated here. 

The numerical simulation allows us to study finite-geometry impulsively initiated 
flows such as these, tracing the development of disturbances to finite values. 
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Certainly, such flows even within infinite cylinders are untreatable by present-day 
linear-stability theories (Homsy 1973 ; Neitzel 1982 b ) ,  and energy theory, while 
yielding lower bounds on onset times, cannot provide any information about the 
approach to a secondary equilibrium state. All these difficulties are in addition to 
those encountered in determining the basic state, if indeed i t  can be determined a t  
all. Therefore it appears that, for flows of this type, numerical experimentation is the 
only theoretical tool a t  our disposal at this time. 

2. Formulation 
Consider a pair of concentric circular cylinders of radii a and b and height h. We 

assume the gap between the cylinders to be filled with a viscous incompressible fluid 
of kinematic viscosity v .  The entire system is assumed to be in an initial state of rest. 
At time t’ = 0, the inner cylinder at radius r‘ = a is impulsively set into rotation with 
angular velocity SZ while the outer cylinder a t  r‘ = b is held fixed. The rigid endwalls 
at z’ = 0, h are assumed to be attached to the inner cylinder and therefore begin to  
rotate with it a t  t’ = 0. Burkhalter & Koschmieder (1974)  have also considered fixed 
endwalls and a free surface, but we shall not do so here. 

The governing equations for axisymmetric flow may be written in dimensionless 
form as: 

(2.1 a )  

(2 .16 )  

(2.1 c )  

( 2 . l d )  

The velocity components are ( u , v , w )  in the directions given by the cylindrical 
coordinates ( T ,  0,z). Here the circulation is proportional to r, 

r = rv, (2.1 e )  

the stream function $ in the ( r ,  z)-plane is given by 

and 6, the &component of vorticity, is given by 

5 = uz-wr. (2.1g) 

The variables have been made dimensionless using the scales d = b - a ,  Qd and 0-1 
for length, speed and time respectively. The Reynolds number R is defined to  be 

R = Qd2/v  

y = h / d .  
and the aspect ratio y is 

Since we are dealing with symmetric end conditions we reduce the size of the 
computational domain by assuming the flow to be symmetric about the midplane 
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a t  z = %. This restricts the flow to have an even number of vortices, which is the case 
normally observed in the laboratory (ruling out, of course, the anomalous modes of 
Benjamin & Mullin 1982). Under the assumptions of axial and midplane symmetries 
and for rotating endwalls, the boundary conditions for system (2.1) are as follows: 

@ = o ,  r=o, y = ( i -  a t  
1 r = -  

1-7 ’  

(2.4a) 

(2.4b) 

( 2 . 4 ~ )  
1 

t + h = O ,  r = r 2 ,  c = ; @ z z  a t  z = O ,  

@ = O ,  rz=O, g = O  a t  z = %  

The initial condition is a state of rest, so that 

@ = r = c = O  for t c 0 .  

(2.4d) 

(2.5) 

In  (2.4), 7 = a / b  is the radius ratio, which was set for these computations to the value 
7 = 0.727 to match one of the experimental configurations of Burkhalter & 
Koschmieder (1974). 

System (2.1) with boundary conditions (2.4) and initial conditions (2.5) were solved 
numerically using the techniques employed previously by Neitzel & Davis (1981) to 
study spin-down. A more complete discussion of the code appears there and in a paper 
by Kitchens (1980), who originally developed the code to study spin-up, and will not 
be repeated here. Briefly, the stream-function equation ( 2 . 1 ~ )  is solved using a 
Gauss-Seidel method, while the circulation and vorticity equations were solved by 
a semi-implicit predictor-corrector-multiple-iteration (PCMI) technique, which 
treats the radial direction implicitly and the axial direction iteratively. 

Both Neitzel & Davis and Kitchens made use of grid-stretching transformations 
in one or more coordinate directions to place more grid points near solid boundaries. 
For the problem considered here, the vortices eventually fill the entire annulus, both 
radially and axially. Therefore good resolution is required everywhere in the flow field, 
and, for this reason, constant grid spacing was used. Through numerical experimen- 
tation i t  was decided for the case y = 23.35 that  18 radial points and 199 axial points 
were sufficient for the range of Reynolds numbers considered. Therefore the distances 
between points in the radial and axial directions were essentially the same since only 
half of the axial extent need be computed. 

3. Results and discussion 
The computations described in the previous section were done on the Arizona State 

University IBM 3081 computer using double-precision arithmetic. A maximum of 10 
iterations were allowed for convergence of the stream function, and up to 25 iterations 
were allowed for the PCMI solutions of the vorticity and circulation equations. 
Computation time was of the order of half a millisecond per grid point per iteration 
of the PCMI procedure. The results of every fifth time step were written to tape for 
later analysis. 

Numerical experiments were performed for several cases of impulsive starts from 
rest. Burkhalter & Koschmieder (1974) used various cylinder lengths for their 
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FIGURE 1 .  Steady-state vortex pattern for R = 62.06 and y = 23.35 at t = 140. 

experiments, observing variations of interior-cell (i.e. excluding endcells) wavelengths 
which exhibited strong dependence on Reynolds number, but appeared to be 
relatively insensitive to changes in aspect ratio. For this reason and for considerations 
of economy, we confine attention here to aspect ratios near the lower end of the range 
considered by Burkhalter & Koschmieder. Flows were calculated for an aspect ratio 
of y = 23.35, which corresponds exactly to the smallest of the experimental values, 
and a few cases were also considered for y = 22. 

3.1. Steady-state results 

The experiments of Burkhalter & Koschmieder (1974) were primarily concerned with 
the steady-state flow that is established following a sudden start. In  particular, we 
shall compare our numerical results for endcell size and interior-cell wavelength to 
their results. Results will be presentled both in terms of RIR,, and, for convenience 
of comparison, TIT,, which is the same ratio for the Taylor number; as defined, the 
latter ratio is the square of the former. 

Assuming that the size of the endcells is dictated more by the presence of rotating 
endwalls than by overall apparatus length, the average wavelength of the interior 
vortices is quantized owing to the fact that  only an integral number of cell pairs may 
be observed. Thus one would not expect the average wavelengths of interior cells in 
apparati of two different aspect ratios y1 and y2 to coincide, unless the difference 
Iyl -y21 is equal to an integral number of these wavelengths. 

Figure 1 shows instantaneous streamlines for the steady-state flow resulting from 
an impulsive start to R = 62.06. For radius ratio y = 0.727, R, = 31.03, so that this 
case corresponds to RIR, = 2 and TIT, = 4. One may easily see the effect of the 
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FIGURE 2. Endcell size versus Taylor number (rotating endwalls) : 0, Rurkhalter 8.1 Koschmieder 
(1974) laboratory results; 0 ,  present numerical experiments. 

rotating endwall on the cell adjacent to it. This cell is driven primarily by Ekman 
pumping (Greenspan 1968) and is present a t  any value of Reynolds number, although 
not necessarily of the size found here. For R/R, = 0.0039 and y = 10, Alziary de 
Roquefort & Grillaud (1978) show a weak endcell penetrating all the way to the 
midplane. This cell develops almost immediately after the start of the rotation - the 
Ekman layer is established within two radians, according to Benton & Clark (1974). 
I n  the present computations, the endcell appears early and changes only slightly 
during the approach to steady state. A comparison between the endcell sizes deter- 
mined numerically and those measured experimentally may be found in figure 2. 
As plotted here, A, is the size of single endcell, scaled by d.  The numerical values 
of A, are calculated by taking the mean of the endcell boundary (+ = 0) locations 
determined one grid point into the flow from the inner and outer cylinders 
respectively. In  agreement with laboratory results, the size of the endcell from the 
numerical experiments remains relatively constant up to  TIT, = 9, and then increases 
although not as rapidly as in the laboratory experiments. Notice that the predicted 
endcell size for TIT, = 36 is in quite good agreement with the laboratory results, 
indicating that the disagreement between predicted and measured interior-cell 
wavelengths for this case is not attributable to a poor prediction of endcell size. 

Interior-cell wavelengths Aeff plotted in figure 3 are determined by subtracting 
endcell sizes from the aspect ratio and dividing the result by the number of interior 
vortex pairs N ,  i.e. 

It should be emphasized that Aeff is a measure of the average wavelength of interior 
cells after the flow has reached a steady-state configuration. Agreement between 
experimentally and numerically determined values of Aeff is excellent for 
1 < TIT, < 16. Aeff is seen to decrease with increasing TIT, in this range. However, 
the numerical results for TIT, = 36 (R/R, = 6) show a departure from the trend 
observed experimentally. As stated in the previous paragraph, this lack of agreement 
is due to an incorrect prediction of the number of interior cells, not to  an error in 
the prediction of A,. For strongly supercritical starts, the earliest-appearing vortex 
pattern does not persist indefinitely. This was observed in the laboratory experiments 
of Kirchner & Chen (1970) as well as in the present calculations. Figure 4 shows 
instantaneous streamline patterns computed for R/R, = 6 a t  three different times 
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FIGURE 3. Interior-cell effective wavelength : 0, Burkhalter & Koschmieder (1974) ; 0 ,  numerical 
experiments, y = 2 2 ;  6, numerical experiments, y = 23.35. 

FIQIJRE 4. Instantaneous streamlines for R/R, = 6 at three times: (a)  t = 40; ( b )  56;  (c) 60. 

during which the flow was changing from a 17-cell (in the computational space) 
configuration to one with 15 cells. As seen in the last of these plots, the interior-cell 
size is quite non-uniform. Barring further changes in the number of cells, one would 
expect the pattern to equilibrate in size on a diffusive timescale associated with the 
length h of the apparatus. Snyder (1969) has shown experimentally that the 
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dimensional relaxation time for such a system of vortices is approximately h2/6v .  I n  
terms of the dimensionless time employed here, this corresponds to t x 1.7 x lo4 for 
R = 186.18 and y = 23.35. Our computation was continued to t = 380 (only 2.2 yo of 
Snyder’s relaxation time), and, while the cells were not yet of equal size, i t  did not 
appear that  further changes in the number of interior cells were likely. 

Another explanation for the failure of the code to predict the number of interior 
cells accurately for this case is the possible influence of non-axisymmetric effects. 
While the steady flow observed experimentally may have been axisymmetric, it is 
possible (and even likely) that during the transient phase, wavy modes may have been 
important. Since ours is an axisymmetric computation, it is unable to account for 
the presence of these wavy modes and is therefore unable to properly predict the flow 
in such a regime. The agreement between the numerical and laboratory experiments 
for R/R, 6 4, however, gives us confidence in the ability of the code to yield useful 
information regarding the development of axisymmetric instabilities. 

3.2. Transient ejjects 
The development of finite-amplitude Taylor vortices from small initial disturbances 
is a complicated nonlinear phenomenon even for the case of a steady weakly nonlinear 
basic state. This development for such a basic state in an infinite geometry is usually 
described by the so-called Landau equation 

- qA - bA3, 
dA 
dt 
_-  (3.2) 

where A(t)is the amplitude of the disturbance, cr is the linear-theory growth rate, and 
b is the ‘Landau constant ’, which for circular Couette flow is positive. The solution 
of (3.2), for A(0)  < (cr/b) t ,  exhibits the initial exponential growth expected on the basis 
of linear-stability theory, followed by equilibration to an  amplitude 

A,  = (cr/b)i (3.3) 
as t becomes infinite. Excellent agreement between theory and experiments for weakly 
nonlinear Couette flows has been obtained by Donnelly, Schwarz & Roberts (1965). 
For strongly nonlinear flows in finite geometries, no such theory exists for comparison 
with our numerical experiments. One would expect, however, that  the initial 
disturbance development would resemble Landau-type behaviour. 

Any number of measures might be used to denote the disturbance amplitude A(t) .  
Since the numerical experimentalist has the advantage of being able to view the entire 
experiment before deciding where to take data, one might choose to monitor the axial 
component of velocity midway (in an axial sense) between two points where the 
boundaries of a single cell will appear in the steady-state flow. The ‘probe’ could be 
positioned radially near the point of maximum axial velocity in the vortex on either 
the inner-cylinder or outer-cylinder side. The initial axial velocity should be quite 
small, if one stays away from an endwall, and a change in its magnitude is indicative 
of the growth of an instability to the nearly pure swirl basic state. This was done 
at a couple of locations for some of the cases considered here. The results are 
independent of position insofar as the initial onset of growth and qualitative 
development of the disturbance are concerned, but, as one would expect, the 
equilibrium amplitude A ,  is dependent on probe location. Another consideration is 
that, since the apparatus is of finite length, cells are observed to move slightly in the 
axial direction as they adjust to changes in the number of cells and as they begin 
to equilibrate in size. Such shifting will cause changes in the velocity a t  a fixed point 
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FIGURE 5. Amplitude history for RIR, = 1.03. 

in the laboratory reference frame which may or may not be indicative of the overall 
strength of a cell. For these reasons, we chose to seek an alternative measure of A( t ) .  

Since we have the stream function @ in the ( r ,  z)-plane a t  our disposal, and since 
@a - @ b  is equal to the volume flow rate between streamlines passing through two 
points a and b in the flow field, we can compute the strength of an individual vortex 
by taking the difference between I++’,,,, the maximum value of @ within the vortex, 
and the value of @ on the boundary of the vortex (9 = 0) .  Such a measure is global 
(for one cell) rather than local, and therefore more difficult to determine in a 
laboratory experiment, but it has the advantage of being independent of position 
(once a particular cell is identified) and insensitive to slight axial motion of the cell. 
It is, of course, still arbitrary in the sense that a particular cell must be selected. For 
the computations performed here, the cell adjacent to the midplane was selected. This 
cell is easily identified numerically (being adjacent to the boundary of the 
computational domain), and sometimes begins to appear early due to  spontaneous 
nucleation near the midplane. We therefore define our A ( t )  to be 

A ( t )  = @ma,, computedlmidplanecell, (3.4) 

where the subscripted ‘computed’ refers to the fact that  the maximum value 
computed for any grid point is used rather than fitting a surface through @ ( r ,  z )  and 
determining the maximum value of @ on the surface. This was done to reduce 
computation time, and, while this will undoubtedly introduce some noise into the 
results, the results should be representative of A(t )  due to the density of grid points 
used (roughly 18 x 18 per cell). 

Figures 5-9 show the behaviour of A( t )  as a function of time for 1.03 d RIR, d 6 
and y = 23.35. All curves exhibit the type of initial growth characteristic of solutions 
of (3.2), but quickly lose that character as the amplitude becomes larger. The 
computation for RIR, = 1.03 (figure 5) was extended to t = 500 without A( t )  reaching 
what might be called A,.  The pattern is changing only insofar as cells in the interior 
regions are becoming more nearly equal in strength to their neighbours closer to the 
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FIGIJRE 6. Amplitude history for l l /€lc = 2 .  

ends. For 2 < RIR, < 4 (figures 6-8), there is a region of rapid growth to an 
amplitude which overshoots A ,  followed by a recovery to A,. The amount of 
oscillation following the overshoot increases with increasing RIR,. This same type 
of behaviour was observed when examining the time history of the axial velocity a t  
a point, as discussed earlier. 

One possible explanation for this overshoot is the spontaneous nucleation of cells 
near the midplane. What we have observed as spontaneous nucleation near the 
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FIGURE 9. Amplitude history for R / R ,  = 6. 

midplane in these computations is undoubtedly due, in part, to the imposition of a 
symmetry boundary there and to the iterative nature of the solution procedure, which 
sweeps in the axial direction. However, one does observe nucleation in the interior 
regions during laboratory experiments not unlike that seen here. Figure 10 shows 
streamline plots for RIR, = 2 at two times during the establishment of the pattern. 
One can see not only the propagation of vortices from the endwall into the interior 

3-2 
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FIGURE 10. Instantaneous streamlines for RIR, = 2 at two times showing nucleation near the 
midplane and vortex front propagation: (a) t = 23; ( b )  t = 25. 

RIB, 4 t ,  tD tB t E  

1.03 0.087 233.70 7.303 10.81 1.769 
2 0.314 22.85 0.3682 2.427 0.124 
3 0.311 17.40 0.1869 1.729 0.077 
4 0.268 15.27 0.1230 1.403 0.059 
6 0.32 13.61 0.0731 1.081 0.043 

TABLE 1. Onset-time results for y = 23.35 

but also the development of cells near the midplane. At time t = 23 the two cells a t  
the midplane are the strongest of this group, while a t  t = 25 the cells adjacent to them 
have increased in strength, partly a t  the expense of the first pair. Notice that these 
changes are occurring during the same time period where we see the overshoot in A ( t )  
(figure 6). 

Finally, in figure 9 we see the amplitude history for R/R, = 6. Recall that this is 
the case whose value for heff disagreed sharply with the data of Burkhalter & 
Koschmieder (1974). Here, instead of approaching some A ,  following the initial 
overshoot and subsequent oscillation, there is a second increase in A in the vicinity 
of t = 50, followed by oscillations which remain nearly constant in peak-to-peak 
amplitude. The second rise appears during the time period discussed previously when 
the flow undergoes a reduction in the number of cells (see figure 4). The persistent 
oscillations may be associated with an instability of this new flow which cannot take 
place due to the restriction of axisymmetry. It is clear that  our numerical simulation 
cannot properly describe the flow for this case. 
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From A ( t )  it  is possible to define an onset time, although it is difficult to justify 
the use ofany definition over any other with the occurrence of events like spontaneous 
nucleation and vortex-front propagation. We choose to define the onset time to be 
that time when A(t )  has reached l /e  of its equilibrium value A,, where we shall 
approximate A ,  by the last computed value of A(t ) .  Obviously, for RIR, = 1.03 and 
RIB, = 6, A(t )  is far from reaching A,, so the results for these two cases will be very 
imprecise. For the other cases, however, the results should be reasonable. The onset 
times computed using this definition are listed in table 1 in terms of four different 
timescales : 

t ,  = t‘Q (rotational), 

t’v 
t ,  = 2 (diffusive), 

4( vt’$ 
t ,  = ~ (boundary -layer), 

d 

t ,  = t’l2y-lR-i (Ekman). 

The diffusive time t ,  is representative of the timescale over which the basic state 
would develop in an infinitely long cylinder, t ,  is a measure of the impulsively 
generated (Rayleigh) boundary-layer thickness, and t ,  is an Ekman timescale 
associated with the spin-up time (Greenspan 1968) of a finite-length system. 

t ,  is related to a (iortler parameter (Neitzel & Davies 1981) which has been used 
to correlate data for flow over concavc walls, while t ,  might be useful if the flow at  
the midplane is strongly affected by Ekman pumping a t  the endwalls. Since onset 
does not occur a t  a fixed value for any of these scales, there appears to be no 
advantage in choosing one over another. Notice also, that the equilibrium amplitude 
A ,  for the midplane vortex shows no apparent trend with KIR,. 

The results for 2 < R/R, < 6 have been plotted in terms of t ,  in figure 11. While 
no quantitative results are available for comparison, the trend of the results is in 
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FIGURE 12. Vortex-front position versus time for R/R, = 2 :  x , 10% ; 0, 20%. 

qualitative agreement with the wide-gap (7 = 0.1) results of Kirchner & Chen (1970); 
onset time decreases monotonically with increasing RIR,. 

A recent paper by Ahlers & Cannell (1983) discusses the onset of instability in 
finite-length circular Couette flow in terms of a vortex ‘front ’ propagating from the 
ends of the apparatus into the interior. Their experiments were performed by 
impulsively increasing the Reynolds number from subcritical to supercritical values 
as measured by F = R/R,- 1. The initial conditions were steady state a t  q, = -0.2, 
and final states ranged from = 0.01 to = 0.1. Kalliroscope particles were 
employed for flow visualization, and the vortex-front arrival time for a given axial 
location was determined by a specified percentage change in the reflectance a t  that  
point. The vortex-front velocity was found to be consistent with, although much 
smaller than, a prediction resulting from a hypothesized amplitude equation. 

To investigate this phenomenon for the strongly nonlinear cases treated here, we 
can monitor the axial (or radial) velocity near the point of its maximum value within 
a known vortex, and when this velocity reaches a specified percentage of its own 
equilibrium value then the front is deemed to have arrived a t  that point. Ahlers & 
Cannell(l983) state that the choice of the percentage influences only the arrival time, 
but not the resulting front velocity. This is not entirely true, since both the reflectance 
and the axial velocity are representative of disturbances, which are growing in a 
nonlinear fashion. This nonlinearity may vary spatially and therefore change the 
arrival times by more than a constant amount. We computed arrival times based on 
achievement of 10 yo and 20 yo of the equilibrium axial velocity. The resulting front 
velocities were found to vary slightly, but by an amount which would probably be 
buried in any experimental noise. 

Figure 12 is a plot of position versus front arrival time for R/R, = 2 .  The 
first-selected position was near the axial centre of the vortex adjacent to the end cell. 
Computations were not taken to the midplane owing to the nucleation effects 
discussed earlier. Front velocities were computed from the slopes of least-squares fits 
through a range of four or five data points over which the velocity appeared to be 
constant and unaffected by nucleation near the midplane. The results for the 
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FIGURE 13. Mean vortex-front velocity versus RIR,. 

y = 23.35 cases in the range 1.03 d RIR, d 4 are shown in figure 13. The front velocity 
is low for R/R, = 1.03, but increases by a factor of 3 for the other cases, indicating 
an onset which would appear to be more nearly instantaneous to an observer of a 
flow-visualization experiment. I n  terms of the notation of Ahlers & Cannell, our result 
for R/R, = 1.03 corresponds to log,,E, = - 1.52 with log,, (wfrOnt) in the range 
0.40-0.45 depending on whether one uses a 10 yo or 20 yo change as the criterion. This 
result falls on their plot (figure 3 of their paper) bracketing the result from their 
amplitude equation. 

I n  summary, the numerical experiments described herein have yielded useful 
information about the instability of a three-dimensional time-dependent basic state 
within a finite-geometry apparatus. Agreement with laboratory data for the resuhant 
steady-state flows is excellent in the regime where the assumptions of the code (in 
this case, axisymmetry) are valid. (The present state of computer hardware makes 
a stimulation of non-axisymmetric flow in a finite-length geometry of this size 
impractical, and perhaps impossible.) Once the initial computations have been 
performed and stored on tape or disc, they are readily available for the extraction 
of any type of results desired. Parameters of the flow (R, 7,  yetc.) may be changed 
a t  will. 

In conclusion, the numerical experiment is indeed a useful tool for the analysis of 
complex unstable flows whose basic states are steady or unsteady and whose 
geometries are finite or infinite. The use of a time-dependent formulation based on 
the full Navier-Stokes equations is valuable for studying not only equilibrium states, 
but also the nonlinear approach to these states. Such may not be the case for 
examining the bifurcations and hysteresis observed experimentally by Mullin ( 1982), 
which required extremely long settling times ; arclength continuation methods of the 
type employed by Meyer-Spasche & Keller (1980) are probably better suited to this 
problem. 
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